Extensions 1→N→G→Q→1 with N=C322SD16 and Q=C2

Direct product G=N×Q with N=C322SD16 and Q=C2
dρLabelID
C2×C322SD1648C2xC3^2:2SD16288,886

Semidirect products G=N:Q with N=C322SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
C322SD161C2 = C32⋊D8⋊C2φ: C2/C1C2 ⊆ Out C322SD16244C3^2:2SD16:1C2288,872
C322SD162C2 = C62.15D4φ: C2/C1C2 ⊆ Out C322SD16484-C3^2:2SD16:2C2288,887
C322SD163C2 = C32⋊Q16⋊C2φ: C2/C1C2 ⊆ Out C322SD16484C3^2:2SD16:3C2288,874
C322SD164C2 = C3⋊S32SD16φ: C2/C1C2 ⊆ Out C322SD16248+C3^2:2SD16:4C2288,875
C322SD165C2 = C62.12D4φ: C2/C1C2 ⊆ Out C322SD16244C3^2:2SD16:5C2288,884
C322SD166C2 = C62.13D4φ: C2/C1C2 ⊆ Out C322SD16488-C3^2:2SD16:6C2288,885
C322SD167C2 = C32⋊D85C2φ: trivial image484C3^2:2SD16:7C2288,871


׿
×
𝔽